Comparison of the Noise Robustness of FVC Retrieval Algorithms Based on Linear Mixture Models

نویسندگان

  • Kenta Obata
  • Hiroki Yoshioka
چکیده

The fraction of vegetation cover (FVC) is often estimated by unmixing a linear mixture model (LMM) to assess the horizontal spread of vegetation within a pixel based on a remotely sensed reflectance spectrum. The LMM-based algorithm produces results that can vary to a certain degree, depending on the model assumptions. For example, the robustness of the results depends on the presence of errors in the measured reflectance spectra. The objective of this study was to derive a factor that could be used to assess the robustness of LMM-based algorithms under a two-endmember assumption. The factor was derived from the analytical relationship between FVC values determined according to several previously described algorithms. The factor depended on the target spectra, endmember spectra, and choice of the spectral vegetation index. Numerical simulations were conducted to demonstrate the dependence and usefulness of the technique in terms of robustness against the measurement noise.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inter-algorithm Relationships for Retrievals of Fraction of Vegetation Cover in a Framework of Linear Mixture Model

Fraction of vegetation cover (FVC) retrieved from remotely sensed reflectance spectra serves as a useful measure of land cover change. Since its retrieval algorithms show variations in assumptions of reflectance models and conditions imposed on the modeled spectra, the retrieved values also show some variations among the algorithms. This study discusses relationships among the FVC retrieval alg...

متن کامل

Relationships Between Errors Propagated in Fraction of Vegetation Cover by Algorithms Based on a Two-Endmember Linear Mixture Model

Remotely sensed reflectance spectra may be biased by several intervening factors, and the biases are propagated into estimations of the fraction of vegetation cover (FVC) by algorithms based on a linear mixture model (LMM). The errors propagated in FVCs depend on the retrieval algorithm used, due to differences in the assumptions of the model as well as constraints employed in the algorithm. Th...

متن کامل

Relationships of Propagated Error in Fraction of Vegetation Cover Among the Retrieval Algorithms Based on a Linear Mixture Model

Fraction of vegetation cover (FVC) is often estimated by unmixing a linear mixture model (LMM). In the LMM-based algorithm, differences can be seen in assumptions and constraints imposed to the model such as spectral vegetation index, inducing variations in algorithm. As a result, robustness against noises in reflectance spectrum is somewhat different among those algorithms, depending on a targ...

متن کامل

Comparative Analysis of Image Denoising Methods Based on Wavelet Transform and Threshold Functions

There are many unavoidable noise interferences in image acquisition and transmission. To make it better for subsequent processing, the noise in the image should be removed in advance. There are many kinds of image noises, mainly including salt and pepper noise and Gaussian noise. This paper focuses on the research of the Gaussian noise removal. It introduces many wavelet threshold denoising alg...

متن کامل

Speech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering

Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Remote Sensing

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2011